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Lake and reservoir (waterbody) depth is a critical characteristic that in-
fluences many important ecological processes. Unfortunately, waterbody
depth measurements are labor-intensive to gather and are only available
for a small fraction of waterbodies globally. Therefore, scientists have tried
to predict waterbody depth from characteristics that are easily obtained
for all waterbodies such as waterbody surface area or the slope of the
land surrounding a waterbody. One approach for predicting waterbody
depth simulates waterbody basins using a geometric cone model where
nearshore land slope is assumed to be a representative proxy for in-lake
slope and the distance to the center of the waterbody is assumed to be a
representative proxy for the distance to the deepest point of the waterbody.
However, these assumptions have rarely been tested in a broad range of
waterbodies. We used bathymetry data from approximately 5,000 lakes
and reservoirs to test the assumptions of the cone model and to examine
whether differences in waterbody type or shape influences depth predic-
tion error. We found that nearshore land slope was not representative
of in-lake slope and using it for prediction increases error substantially
relative to models using true in-lake slope. We also found that models
using nearshore land slope as a proxy systematically overpredict depth in
concave waterbodies (i.e. bowl-shaped; up to 18% of waterbodies in the
study population) and reservoir waterbodies (up to 30% of waterbodies in
the study population). Nevertheless, model errors were low (in absolute
and relative terms) for concave waterbodies, suggesting that the cone
model is an adequate representation of depth for these waterbodies.
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Introduction. Depth is an important factor controlling waterbody
physics, chemistry, and biota. For example, deeper waterbodies
generally have higher water clarity and less complete mixing com-
pared to shallow waterbodies (Fee et al., 1996; Read et al., 2014).
These differences are reflected in variation among waterbodies
in terms of biological productivity (Qin et al., 2020) and rates of
greenhouse gas production (Li et al., 2020). However, because
measured depth data is only available for a small fraction of water-
bodies (about 15% of all waterbodies in the area encompassed by
our study), our ability to understand and predict depth-dependent
processes is limited. The importance of waterbody depth, coupled
with its limited availability, has led to numerous attempts to predict
depth using measures available for all waterbodies such as water-
body surface area or the nearshore slope of the land surrounding a
waterbody (Heathcote et al., 2015; Oliver et al., 2016; Sobek et al.,
2011). Such efforts rely on a strategy of exploiting correlations
between nearshore geomorphology and in-lake geometry, which
at limited extents (e.g., within a single North American state or
province) can be quite strong, while at larger extents can be de-
pendent on geographic location and waterbody type (Oliver et al.,
2016; Branstrator, 2009).

Given the limited prediction accuracy of prior depth prediction

efforts (£ 6-7 m, Heathcote et al. 2015; Oliver et al. 2016; Sobek
et al. 2011), a major focus has been on improving accuracy using
strategies such as employing more diverse covariates (Oliver et al.,
2016), varying waterbody buffer sizes (Heathcote et al., 2015),
or estimating hidden groupings (e.g. fitting different models for
distinct size classes) among waterbodies (Cael et al., 2017; Sobek
et al., 2011). Unfortunately, the predictive accuracy of these efforts
has been limited (£ 6-7 m).

One intuitive approach for predicting waterbody depth involves
using a geometric model that assumes waterbody basins correspond
to an idealized shape such as a cone, bowl, or an elliptic sinusoid
(Getirana et al., 2018; Hollister et al., 2011; Neumann, 1959;
Yigzaw et al., 2018). All such geometric models for waterbody
depth prediction involve implicit assumptions about the terms of
geometric formulae. In the simplest case, where waterbody basins
are treated as cones (Eq. 1, Fig. 1), two assumptions are required
to make depth predictions for all waterbodies: 1) that nearshore
land slope is a representative proxy for in-lake slope and 2) that
the distance to the center of the waterbody is a representative
proxy for the distance to the deepest point of the waterbody (Fig.
1). This cone model imposes the following fixed (i.e. geometric)
relationship between slope and horizontal distance:

depth [1]

where the product of slope and horizontal distance yields an exact
geometric depth estimate (deptheqmerric)- Cone models of water-
body basins have been used extensively to estimate hypsography
in waterbodies where there is no knowledge of volume or mean
depth (Read et al., 2014; Winslow et al., 2017).

The assumptions of the cone model (as well as other geometric
models) can be tested by comparing proxy measures of waterbody
geometry against corresponding “true” (i.e. in-lake) values derived
from bathymetric maps and by evaluating how waterbody cross-
section shapes differ from that of an idealized cone (Johansson
et al., 2007). For instance, waterbody cross-section shapes have
been shown to vary from narrow “convex” forms to outstretched
“concave” forms (Hakanson, 1977). Because tests of geometric
model assumptions require bathymetric map data, which is only
available for a small fraction of waterbodies (including about 15%
of all waterbodies in our study footprint), existing evidence may
not be applicable to all waterbodies. The few studies that have
tested these assumptions have been limited to individual studies
of very large (> 500 ha) waterbodies or studies on small numbers
(< 100) of waterbodies (Johansson et al., 2007). Studies focused
specifically on reservoirs (as opposed to the more typical case where
reservoirs and natural lakes are combined), have been even more
restricted to that of large waterbodies > 1000 ha (Lehner et al.,
2011; Messager et al., 2016).

geometric = tan(slope) x distance
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Fig. 1. Diagram showing the relations between true (black) and proxy (orange) metrics of
lake geometry. Geometric depth calculated via Equation 1 requires a single distance and
slope metric.

As a result of this limited testing, we lack knowledge on both the
predictive performance of geometric models, the effect of proxies on
depth prediction, and whether depth predictions are more sensitive
to measurement errors in the horizontal dimension (i.e. distance
to the deepest point of the waterbody) or measurement errors
in the vertical dimension (i.e. in-lake slope). Additionally, it is
unclear whether model prediction error is related to differences
in waterbody type such those with different cross-section shapes
(concave versus convex) or those classified as reservoirs versus
natural lakes. To address these knowledge gaps, we asked three
research questions:

1. How representative is nearshore land slope of in-lake slope;
and how representative is the distance to the center of a wa-
terbody compared to the distance to the deepest point of a
waterbody?

2. How does the use of proxies for waterbody geometry affect
waterbody depth prediction error?

3. How does waterbody cross-section shape (i.e. concave versus
convex) and waterbody type (i.e. natural lake vs reservoir)
affect depth prediction error?

To answer these questions, we extracted maximum depth (here-
after referred to as “observed maximum depth”), in-lake slope,
cross-section shape (i.e., concave versus convex), and distance
to the deepest point, of approximately 5,000 waterbodies from
bathymetric map data. We supplemented these geometry measures
with data classifying waterbodies as reservoirs or natural lakes. We
used this data to compute geometric depth estimates (Equation 1)
and prediction “offsets” to these estimates using the random forest
algorithm (Equation 3). Such offsets are model quantities which
minimize differences between observed and predicted depth as a
function of covariates. In our case, covariates included a variety of
waterbody, watershed, and hydrologic subbasin measures that are
available for all waterbodies (Table 1).

By definition, the distance proxy (distance to the center of the
waterbody) must always be greater or equal to the true distance
value (distance to the deepest point of the waterbody). Therefore,
we expect that the use of this proxy will lead to overestimation of

Table 1. Summary of lake characteristics for the present study (and for lakes
in the contiguous United States). Predictor variables for computing random
forest offsets (Equation 2) are printed in bold face. Dashes (-) indicate an
identical sample size among this study and that of the contiguous United
States from the National Hydrography Dataset. The total number lakes is
reported as n.

Variable Median Q25 Q75 n

Max depth (m) 8.2 (7) 4.6 (3.7) 14 (12) 4820 (17700
Area (ha) 55 (33) 21 (11) 140 (100) 4820 (17700
Island area (ha) 0(0) 0 (0) 0.18 (0.076) 4820 (17700

Perimeter (m) 4400 (3500) 2500 (1800) 8100 (7300) 4820 (17700

(

(

(

(
Shoreline development 1.7(1.7) 1.4 (1.4) 2.1(2.2) 4820 (17700
Elevation (m) 300 (340) 180 (210) 400 (460) 4820 (17700
Watershed-lake ratio 7.8 (10) 3.9 (4.4) 17 (28) 4820 (17700
Deepest point distance (m) 180 (-) 110 (-) 290 (-) 4820 (-)
Mean deepest point distance (m) 140 (-) 87 (-) 230 (-) 4820 (-)
Visual center distance(m) 240 () 160 (-) 390 (-) 4820 (-)
Inlake slope (m/m) 0.05 (-) 0.02 (-) 0.08 (-) 4820 (-)
Inlake slope online (m/m) 0.06 (-) 0.03 (-) 0.14 (-) 4800 (-)
Inlake slopes (m/m) 0.06 (-) 0.03 (-) 0.1 (-) 4820 (-)
Inlake slopes online (m/m) 0.07 (-) 0.03 (-) 0.15 (-) 4800 (-)
Mean inlake slope (m/m) 0.04 (-) 0.02 (-) 0.09 (-) 4820 (-)
Nearshore mean slope (m/m) 0.08 (-) 0.05 (-) 0.11 (-) 4820 (-)
Nearshore slope online (m/m) 0.08 (-) 0.04 (-) 0.13 (-) 4590 (-)
Nearshore slopes online (m/m)  0.08 (-) 0.04 (-) 0.13 (-) 4540 (-)

waterbody depth (Fig. 1). Furthermore, we expect to see greater
overestimation error in reservoirs as compared to natural lakes
because many reservoirs are known to be drowned river valleys
where the deepest point is close to the edge at the end of the reser-
voir (i.e. next to the dam) rather than in the center of the reservoir
(Lanza and Silvey, 1985). In a similar fashion, we expect to see
overestimation error associated with using a nearshore land slope
proxy in waterbodies with differing cross-section shape such that
the depth of bowl-shaped (i.e. concave) waterbodies will be over-
predicted whereas the depth of V-shaped (i.e. convex) waterbodies
will be underpredicted (Fig. S1). Finally, we expect that depth
predictions themselves will be strongly related to waterbody area
and hydrologic subbasin variables as these measures have been
influential in prior studies (Oliver et al., 2016).

By testing these expectations, we can establish whether barriers
to increased depth prediction accuracy lie in lack of correspon-
dence between true and proxy measures of waterbody geometry
or in particular characteristics among waterbodies (such as wa-
terbody cross-section shape or reservoir status). This information
could help direct future research efforts to focus on particular
dimensions of waterbody geometry (i.e. horizontal versus verti-
cal) or to stratify model predictions based on specific waterbody
types and cross-section shapes. Ultimately, achieving increased
depth prediction accuracy would allow for more precise estimates
of depth-dependent biotic and chemical processes across broad
spatial extents.

Methods.

Data description. We compiled bathymetry data on approximately
5,000 waterbodies in the Northeastern and Midwestern United
States from nine official state databases (Fig. 2). These represent
approximately 15% of all waterbodies in the States included in our
study and are a diverse cross section in terms of their characteris-
tics, surface areas, and span a wide geographic extent including
glaciated and non-glaciated regions (Table 1). Thus, they can be
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considered representative of the entire population of lakes in our
study extent.

Max depth (m)
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Fig. 2. Map of study waterbodies showing A) maximum depth measurements, B) cross-
section shape class, and C) reservoir classification. The distribution of lake depths from
panel A is reported in Figure S10.

The original data came in a variety of formats including pre-
interpolated rasters (Minnesota), contour lines (Nebraska, Michi-
gan, Massachusetts, Kansas, Iowa), contour polygons (New Hamp-
shire, Connecticut), or point depth soundings (Maine). For the
Minnesota data, we simply clipped the raster for each waterbody to
its outline. For data from the remaining States, we processed each
waterbody by converting its original representation to a point layer
(if necessary), rasterizing these points, and creating an interpolated
bathymetry “surface” using a simple moving window average in
the raster R package (Hijmans, 2019). The size of the moving
window was adjusted iteratively to ensure that each bathymetry
raster contained no missing data.

All waterbody bathymetry was specifically calculated relative
to high-resolution (1:24,000 scale) National Hydrography Dataset
(USGS, 2019) waterbodies such that source data and bathymetry
surface outputs were clipped to the area of each waterbody polygon.
We restricted the waterbodies in our study to those with an area of
at least 4 ha and a maximum depth of at least 0.3 m (1 ft.). The
purpose of these restrictions was to ensure that waterbodies had
enough contours (or points, or polygons) to generate adequately
smooth interpolations with which to calculate in-lake geometry
metrics.

We used our generated bathymetry surfaces to find the loca-
tion of the deepest point in the waterbody and we resolved ties
by choosing the deepest point that was closest to the center of the
waterbody. We used the location of this deepest point to calcu-
late “distance to the deepest point” as the minimum distance to
the waterbody shoreline. To account for waterbodies where the
centroid does not intersect waterbody bathymetry because it is
located within an embedded island or peninsula, we calculated the
center of the waterbody not as its centroid but rather by finding
the point farthest from the waterbody shoreline (i.e. its “visual
distance to waterbody center”). For these calculations, we used
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the polylabelr R package (Larsson, 2019), which interfaces with
the Mapbox pole of inaccessibility algorithm (Agafonkin, 2019).
We calculated (maximum) in-lake slope as depth at the deepest
point divided by the shortest distance to the deepest point from the
shoreline. We calculated (mean) nearshore land slope for each wa-
terbody by computing the slope within a 100-m buffer using data
from a high-resolution digital elevation model (~ 15x15m grain)
accessed using the elevatr R package (Hollister and Shah, 2017).
We explored alternative buffer sizes ranging between 50-1000 m
following Sobek et al. (2011) and although 100 m provided the
lowest model error, we ultimately found little appreciable effect
of varying buffers on model performance. Slope computations
proceeded by passing a 3x3 moving window over the 100-m buffer
to calculate the slope at each point using Horn’s algorithm via the
terrain function in the raster R package (Hijmans, 2019). Re-
ported nearshore land slope values are the mean of all points in the
buffer. In addition to the aforementioned techniques of calculating
in-lake (and nearshore) slopes and distances, we tried 7 alternate
techniques which are described in Fig. S2 and Table S1 including
measures such as median slope (results not shown).

We categorized waterbodies based on their cross-section shape
and reservoir class (e.g. natural lake, reservoir). For cross-section
shape, we categorized waterbodies as either convex or concave fol-
lowing the method of Hakanson (1977) by computing normalized
waterbody depth-area relationships (i.e. hypsographic curves) and
assigning class membership based on whether the midpoint of a wa-
terbody’s curve falls above or below that of a simple straight-sided
cone (Fig. S3).

We further categorized waterbodies using the output of a deep
convolutional neural network model trained on satellite images
labelled according to whether there was visual evidence of a wa-
ter control structure significantly impacting flow (Polus et al., In
prep). This model had an overall validation accuracy of 81% and
produced a probability for each waterbody as to whether it is a
reservoir or a natural lake. For our purposes, we set a conservative
classification probability threshold of 0.75 to determine whether
a waterbody would be considered a reservoir. For example, if the
Polus et al. (In prep) dataset classified a particular waterbody as a
reservoir with a probability of 0.74 we categorized it as a natural
lake but if the probability was greater than 0.75 we categorized it as
a reservoir. Note that our reservoir classification defines reservoirs
as any permanent waterbody that has a water control structure
likely to significantly impact flow or pool water. It makes no dis-
tinction between different dam types, heights, or uses/purposes
because the Polus et al. (In prep) dataset is only based on visual
interpretation of waterbody images (via deep convolutional neural
network models). However, the Polus et al. (In prep) dataset is
unique in that it provides data using a standardized approach at
broad spatial extents for waterbodies > 4 ha.

Covariates used in random forest modeling (Table 1, Equation
3, see Random Forests Model sub-section below) for waterbody ele-
vation, area, island area, perimeter, shoreline development, water-
shed to waterbody area ratio, and hydrologic subbasin (i.e. HUC4s),
were obtained from the LAGOS-US LOCUS database. One such
measure, that of shoreline development, is a measure of waterbody
perimeter shape defined as:

shoreliney,,, = perimeter /(2% \/(n *waterarea * 10000))
(2]

where sinuous waterbodies have larger values of shoreline devel-
opment and circular waterbodies have smaller values of shoreline
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Table 2. Model fit and predictive accuracy metrics (RMSE = root mean
square error, R2 = coefficient of determination, MAPE = mean absolute
percent error) for all combinations of true (in-lake slope, distance to the
deepest point of the waterbody) and proxy (nearshore land slope, distance
to waterbody center) metrics.

Filter Slope Distance = RMSE  R? MAPE
all true true

true proxy 48m 0.73 27 %

proxy true 7.3m 0.31 64 %

proxy proxy 71m 036 61%
reservoir true true

true proxy 53m 0.66 36 %

proxy true 7m 0.40 61 %

proxy proxy 7m 0.41 60 %
natural lake  true true

true proxy 41m 0.74 22 %

proxy true 6.7m 026 68%

proxy proxy 6.6 m 029 64%
convex true true

true proxy 4.7m 0.74 30%

proxy true 72m 034 59%

proxy proxy 6.9 m 039 58%
concave true true

true proxy 1.6m 0.78 20%

proxy true 3.1m 0.14 46 %

proxy proxy 3m 017 45%

development. Watershed to waterbody area ratio is an approxi-
mation of water residence time and is defined as watershed area
divided by waterbody area (Timms, 2009).

Proxy evaluation. We conducted a qualitative assessment of whether
or not proxy measures of waterbody geometry (e.g. nearshore land
slope, distance to the center of the waterbody) are representative
of their true values (e.g. in-lake slope, distance to the deepest point
of the waterbody) by visual inspection (i.e. plotting each proxy
measure against its corresponding true value) and by computing co-
efficients of determination (R?). We further tested proxy measures
by examining their effect on waterbody depth prediction error. Our
approach involved several steps. In the first step, we computed a
geometric estimate of waterbody depth using only geometry infor-
mation (depthgye,merric, EQuation 1). In the second step, we fit a
random forest model to predict observed (i.e. true) depth as a func-
tion of geometric depth along with several covariates available for
all waterbodies (Table 1). The purpose of this random forest “offset”
modeling was to more rigorously test our expectations regarding
prediction error among different formulations of depth g merric and
among different waterbody types. Each of these steps were exe-
cuted iteratively for each combination of true and proxy values of
slope and distance (Table 2). We conducted additional sensitivity
analysis to examine possible interactions between different proxy
measures of waterbody geometry and different subsets of the entire
dataset where model data was restricted (i.e. “filtered”) to include
only reservoirs, only natural lakes, only convex waterbodies, or
only concave waterbodies (Table 2).

Model description.

Geometric model. We used a geometric model of waterbodies where
basins are treated as cones with a fixed relationship between slope
and distance (Equation 1). One reason that we used the cone
model is that, unlike other idealized shapes, it does not require

any knowledge of waterbody volume or mean depth. Note that
Equation 1 is a geometric formula and has no intercept or coeffi-
cients and it produces an exact depth value given true values of
slope and distance. To use this model to predict the depth of all
waterbodies, there is a necessary assumption that proxy slope and
distance measures, which are available for all waterbodies, are
representative of true slope and distance (Fig. 1).

Random forest models. Prior studies using geometric models to pre-
dict waterbody depth include a statistical or machine learning
model “layer” or “offset” to boost predictive accuracy (Hollister
et al., 2011; Yigzaw et al., 2018). This procedure involves fitting a
statistical or machine learning model to the residuals of an initial
geometric model. For our purposes, such offset modeling enabled
us to test our expectations that prediction error would be different
among different formulations of depth,qpme.ric and among differ-
ent waterbody types. It also facilitated direct comparison against
prior models of waterbody depth including those that are non-
geometric. We generated an “offset” to geometric depth (sensu
Hollister et al. 2011) using the random forest algorithm and the
ranger R package (Wright and Ziegler, 2017) to predict observed
maximum depth as a function of covariates including geometric
maximum depth (from Equation 1) along with the waterbody ele-
vation, area, perimeter, and ratio/index measures listed in Table
2:

depthobserved ~ depthgeometric +covariates [3]

We evaluated the relative “importance” of individual covariates
by comparing model performance between 1) models where a
given covariate was left untouched versus 2) models where a given
covariate was permuted randomly (Prasad et al., 2006; Wright and
Ziegler, 2017). Neither cross-section shape nor reservoir class was
used as a covariate in any random forest models. Random forest
training and test data was stratified on shape and reservoir class
to match that of the overall waterbody population. We used the
random forest algorithm because it makes no assumptions about
the distribution of model residuals, allows for non-linearity, and is
insensitive to interactions (i.e. multicollinearity) among covariates
(Prasad et al., 2006).

Model comparisons. We tested model sensitivity to slope and dis-
tance proxies by generating multiple “geometric maximum depth”
estimates from 3 different model runs using each of the possible
metric combinations for Equation 1 (true slope - proxy distance,
proxy slope - true distance, proxy slope - proxy distance). Prior
to entry into Equation 1, we standardized proxy distances to have
the same numeric range as their true counterpart. The purpose of
this standardization was to prevent waterbodies with extremely
long proxy distances from having an outsized impact on model
evaluation metrics. In addition to comparing among model runs
using different metric combinations, we compared among sets of
model runs where slope and distance measures were calculated
using different sets of calculation techniques (Table S1).

Model evaluations. We evaluated model fit and prediction error us-
ing root-mean-square error (RMSE), mean absolute percent error
(MAPE), and coefficient of determination (R%) metrics on a hold-
out set (i.e. a data subset not used for model training) containing
25% of all waterbodies. We evaluated the residuals of each model
relative to waterbody cross-section shape and reservoir classes to
determine whether depth is consistently over or under predicted
for some waterbody types relative to others.
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Results. Waterbodies belonging to each cross-section shape and
reservoir class were not evenly distributed across our study area
(Fig. 2). For example, concave waterbodies were nearly absent
from Michigan whereas Maine had an overabundance (~3%) of
waterbodies categorized as neither concave nor convex. Waterbod-
ies in the southern portions of our study area tended to be classified
as reservoirs whereas waterbodies in the northern portions of our
study area were a more even mix between reservoirs and natural
lakes (Fig. 2). Approximately 18%, 80%, and 2% of waterbodies
were classified as having a concave, convex, or neither shape re-
spectively whereas approximately 30% and 70% of waterbodies
were classified as being a reservoir or a natural lake.

Although proxy distance to waterbody center was often larger
in magnitude compared to the true distance to the deepest point
of waterbodies’ (rather than being identical), they were strongly
related (R> = 0.8). Note that the coefficient of determination
for this relationship is not strictly correct given that distance to
waterbody center is an upper bound on distance to the deepest point
of waterbodies. In contrast to distance metrics, proxy nearshore
land slope and true in-lake slope were more weakly related (R?> =
0.17). For slope measures, most waterbodies had higher magnitude
(i.e. steeper) nearshore land slope compared to true in-lake slope
(Fig. 3). Taken together, these results suggest that proxy distance
to the center of waterbodies is representative of true distance to the
deepest point of waterbodies whereas proxy nearshore land slope
is not representative of true in-lake slope. The strong relationship
between distance to the center of waterbodies and distance to the
deepest point means that it is possible to convert between the two
measures in subsequent analyses (See best-fit equations in Fig. 3).
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y ~44.08 + 1,18 * dist_deepest 0.0

0
0 1000 2000 3000 00 01 02 03 04
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Proxy measures

Fig. 3. Comparison among proxy and true values of lake geometry for A) distance to deepest
point versus distance distance to lake center and B) nearshore land slope versus in-lake
slope. A best-fit line (solid) and equation is shown to shown to facilitate computation of
correction factors for proxy values of lake geometry. A 1:1 line (dashed) is shown to illustrate
bias. Coefficients of determination are shown to illustrate representativeness.

In addition to overall differences between slope and distance
measures, we found differences in these relationships among wa-
terbody shape classes. For example, in-lake slope and distance to
the deepest point of the waterbody metrics were consistently larger
in magnitude for convex waterbodies as compared to concave wa-
terbodies (Fig. S4). We found evidence that this difference was
at least partly explained by the fact that convex waterbodies are
deeper than concave waterbodies (Fig. S5). Unlike concave and
convex waterbodies, there were not clear differences among slope
and distance metrics for natural lakes versus reservoirs.

Offset model fit and prediction error differed depending on the
technique used to calculate in-lake and nearshore geometry metrics
(Table S1). We found that the best model fit and lowest model
error occurred when in-lake slope was calculated as the average
point-wise slope of all points at maximum waterbody depth rather
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than at single point of maximum depth. However, given the small
difference in the fit of models using either of these techniques and
the significant cost in terms of computational load and complexity,
we limit our discussion hereafter to the simpler case involving only
a single deepest point.

The use of proxy nearshore land slope had a larger effect on
model fit and prediction error than the use of proxy distance to wa-
terbody center (Table 2). More specifically, the true slope (in-lake
slope) - proxy distance (distance to the center of the waterbody)
model had a better fit (R> = 0.73) and lower prediction error
(RMSE = 4.8m, MAPE = 27%) compared to the proxy slope - true
distance model (R?> = 0.31, RMSE = 7.3m, MAPE = 64%). The
fit of the proxy slope -proxy distance model (R? = 0.36, RMSE =
7.1m, MAPE = 61%) was very similar to the proxy slope — true dis-
tance model. Predicted depth values for this model were generally
underestimates relative to measured depth values (Fig. S6).

Furthermore, analysis of model residuals showed overestima-
tion of waterbody depth for concave waterbodies when models
included a proxy slope measure (Fig. 4). We observed similar but
smaller overestimation depending on if a waterbody was classified
as a reservoir rather than a natural lake (Fig. 4). We found that
models restricted to consider only concave lakes had lower error
(both in absolute and relative terms) compared to models on other
data subsets (e.g. convex lakes, reservoirs, natural lakes, see Table
2). Conversely, we did not observe any notable geographic patterns
in model residuals (Fig. S7).

The most important covariates in these models were those re-
lating to spatial location, waterbody area, and perimeter (Fig. 5).
Conversely, watershed metrics and waterbody elevation had lit-
tle contribution to random forest model fit. The spatial location
(i.e. HUC4, hydrologic subbasin) covariate was notably less im-
portant in the true slope model compared to the two proxy slope
models. To evaluate the contribution of our “offset” models relative
to the “base” geometric model, we can look at model importance
calculations for the geometric max depth input to the random
forest model (Fig. 5). These calculations indicate that omitting a
geometric max depth term results in a 130%, 60%, or 50% increase
in mean square error depending on the formulation of geometric
max depth in Eq. 1.

Discussion. Our tests of the geometric cone model of waterbody
depth models show that specific proxy measures of waterbody
geometry are not representative of true geometry measures across
a broad array of waterbodies. Models using non-representative
proxies showed increased error and systematic overestimation of
depth in concave and reservoir waterbodies. Although our analysis
was limited to waterbodies with available bathymetry data, these
waterbodies did not have characteristics that differed from that of
the overall waterbody population (apart from the fact that our study
waterbodies were somewhat larger in area compared to the overall
waterbody population, See Fig. S8, Table 1, Fig. S9). Although
there is a possibility that there is some hidden bias not explored
for in our analyses, this lack of difference suggests that our results
are likely to be broadly applicable to nearly all waterbodies in the
study area.

Representativeness of proxy measures of waterbody geometry. In com-
paring among waterbody geometry measures, our analysis suggests
that proxy distance to waterbody center is representative of true
distance to the deepest point of the waterbodies, but that proxy
nearshore land slope is not representative of true in-lake slope.
A simple indication of this non-representativeness is that proxy
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nearshore land slope was often (in > 74% of cases) steeper than
true in-lake slope. This finding is consistent with Heathcote et al.
(2015) whose results suggest that in-lake slopes are shallower com-
pared to the surrounding land. Furthermore, the fact that in-lake
slopes were shallower compared to the surrounding land even
after controlling for differences in area (Fig. S10) is consistent
with the idea of topographic scaling (i.e. scale invariance) explored
in previous work and detailed by (Cael et al., 2017). The under-
lying reason for these shallow in-lake slopes may be related to
slope-induced turbidity currents which distribute sediment from
shallow high-energy areas of waterbodies to deep low-energy areas
(Hakanson, 1981; Johansson et al., 2007). The strength of such
sediment focusing is likely greater in “younger” waterbodies with
steeper slopes leading to a smoothing of their bathymetry over time
(Blais and Kalff, 1995).

One surprising finding with respect to the relationship between
true and proxy geometry measures when examined by waterbody
class was the fact that there was no greater difference between
proxy and true distances in reservoirs compared to natural lakes.
This is contrary to the idea that most reservoirs are drowned river
valleys where the deepest point is close to the edge at the end of
the reservoir (i.e. next to the dam) rather than in the center of the

reservoir (Lanza and Silvey, 1985). One possible explanation is
that our reservoir classification data uses a more general definition
of a reservoir (i.e. any permanent waterbody that has a water
control structure likely to significantly impact flow or pool water)
compared to that of conventional classifications that are tied to
specific dam types or dam heights. Another possible explanation is
that conventional reservoir classifications are conceptually biased
towards more southern areas with few natural lakes (Figure 2).
Southern Iowa, for instance is typically considered to have few to
no natural lakes. In the present study, all of the apparent natural
lakes in Southern Iowa were in fact oxbow lakes adjacent to the
Missouri River.

We found other differences among waterbody geometry mea-
sures according to waterbody cross-section shape. One finding was
that convex waterbodies, when compared to concave waterbodies,
had longer distances to waterbody centers relative to correspond-
ing distances to the deepest point of waterbodies. In addition,
convex waterbodies often had steeper in-lake slopes relative to
nearshore land slopes as compared to concave waterbodies. Fi-
nally, it was notable that convex waterbodies were deeper than
concave waterbodies despite having similar distributions of wa-
terbody surface area (Fig. S5). The underlying cause of these
differences is unknown but one possibility is that geometry is tied
to the circumstances of waterbody formation whereby the forma-
tion of concave waterbodies were a result of more intense glacial
scouring compared to that of convex waterbodies (Gorham, 1958).
While our findings provide some evidence in support of this idea,
namely that there is a geographic hotspot of concave waterbodies
associated with the glaciated “prairie pothole region” (see Hayashi
and van der Kamp 2000), the overall geographic distribution of
waterbody cross-section shapes does not support this idea. Instead
of a concentrated area of concave waterbodies in formerly glaciated
regions, there appears to be a fairly even mix of concave and convex
waterbodies distributed amongst the northern (i.e. glaciated) and
southern (non-glaciated) portions of our study area (Fig. 2).

Effects of proxy measures of waterbody geometry depth prediction er-
ror. Models using only proxy variables (Table 2) had prediction
error rates (RMSE = 7.1m) of a similar magnitude as that of prior
studies (RMSE = 6 - 7.3m) predicting waterbody depth at broad
geographic extents (Hollister et al., 2011; Messager et al., 2016;
Oliver et al., 2016). When only a single proxy measure was used,
there was a difference in model sensitivity depending on if it was
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a horizontal distance measure or a vertical slope measure. In the
case of a true slope and proxy distance combination, models were
more accurate (+ 4.8m, 27%) than even the most accurate of prior
studies (Hollister et al., 2011; Messager et al., 2016; Oliver et al.,
2016). Conversely, models using a proxy slope and true distance
combination had prediction error rates (£ 7.3m, 64%) of a similar
magnitude as that of the baseline proxy-proxy model (£ 7.1m,
61%). The greater sensitivity of depth predictions to proxy slope
measures relative to proxy distance measures may be explained by
the fact that proxy slope measures were a more imperfect represen-
tation of true in-lake slopes relative to proxy versus true distances.
We did not find evidence that the sensitivity of depth predictions
to slope was dependent on variations in how these measures were
calculated (Table S1). In a general sense, the sensitivity of depth
predictions to slope help explain the relatively poor predictive per-
formance of prior non-geometric waterbody depth models given
that they rely heavily on waterbody area as a predictor (Sobek
et al., 2011; Messager et al., 2016; Oliver et al., 2016) and both
horizontal distance measures and vertical slope measures appear
to be decoupled from waterbody area (Fig. S5).

Effects of waterbody shape and waterbody type on depth prediction error.
As expected, we found that the maximum depth of concave wa-
terbodies was systematically overpredicted by a simple geometric
model using proxy nearshore land slope (Fig. S1). However, con-
trary to our expectation, we did not observe underprediction of
depth in convex waterbodies. The reason we did not observe un-
derprediction of the depth of convex waterbodies is likely because
geometric depth itself was always greater than observed maximum
depth owing to the fact that proxy distance is constrained to be
greater than true distance. Given that models restricted to only
concave waterbodies had low error (both in absolute and rela-
tive terms), this suggests that despite evidence of overprediction,
the cone model is an adequate representation of depth for these
waterbodies.

Future research. The only model parameterization that was more
accurate than the most accurate of prior studies fitting models to
waterbody depth data requires data on in-lake slope (true slope,
proxy distance) which is not available for all waterbodies thus it is
not of practical use for general prediction. However, we propose
that the error rate of this model (+ 4.8m, 27%) be used as an
out-of-sample prediction benchmark for future studies such that
they should attempt to match it but not expect to exceed it.
Because this most accurate model requires bathymetry data, this
suggests that it may not be possible with current data and models
to produce depth predictions for all waterbodies with error rates
below about 5m or 30%. To achieve high prediction accuracy using
data available for all waterbodies, future studies could explore
alternative modeling approaches such as ordinal modeling, which
would capture whether or not a waterbody crosses some important
depth threshold but would not seek to predict a specific depth value,
or emerging data types such as “topobathymetric” products that
integrate both topographic and bathymetric data in a seamless fash-
ion rather than treating them as separate entities. Topobathymetry
would allow for more robust tests of the representativeness of geo-
metric model inputs. Unfortunately, topobathymetric products are
rare, have mostly been limited nearshore marine environments, and
as such are not yet widely available for inland waters (Danielson
et al., 2016). Other potential explanatory data include information
on waterbody origin and development. Unfortunately, such “water-
body ontogeny” data is presently available only for select regions
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and the very largest waterbodies (Sharma and Byrne, 2011).

Finally, our findings indicate that geometry measures differ ac-
cording to waterbody cross-section shape. This makes it an attrac-
tive target for inclusion in depth prediction models. Unfortunately,
identifying a waterbody’s cross-section shape requires bathymetry
data which is unavailable for most waterbodies. However, given
the conceptual links between cross-section shape, glaciation, and
sedimentation (Johansson et al., 2007) it may be advantageous for
future studies to compile data on sedimentation to determine if this
data can be used to predict cross-section shape and boost depth
prediction accuracy. We note that such data does not currently
exist for large numbers of waterbodies.

Conclusion. To our knowledge, the present study is the largest
and most comprehensive test to date of the geometric cone model
of waterbody depth. Using bathymetry data on approximately
5,000 waterbodies, we show that proxy slope measures are not
representative of true in-lake slope and this leads to overestimates
of depth in concave and reservoir waterbodies. Despite these
apparent biases, overall prediction accuracy was equivalent to that
of prior depth prediction studies (+ 6-7m). In addition, models
restricted to only concave waterbodies had low error (both in
absolute and relative terms) suggesting that the cone model is an
adequate representation of depth for these waterbodies.

Only our models using a true measure of in-lake slope had
greater accuracy than that of prior studies (£ 4.8m, 27%). Given
that this model requires data which is only available for water-
bodies with bathymetry data, it is of limited use for general depth
prediction. Lack of improved prediction accuracy (short of in-
cluding data that is unavailable for most waterbodies) suggests
that improved prediction may require new types of data or novel
analysis techniques.

Data availability. All data used in the study is available at Stachelek
(2021b). All code for data processing, model fitting, and model
evaluation is available at Stachelek (2021a).
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Figure S1. Diagram showing our expectation that slope-based models of lake depth will under
predict true depth in convex lakes (left) and over predict true depth in concave lakes (right).
Dashed lines represent extrapolated nearshore land slope while solid lines represent the lake

bottom.
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Figure S2. Comparison between in-lake and nearshore slope using different calculation

techniques. The techniques used in the main text analyses are bolded and the combination
of these techniques (top-left corner) produces the strongest relationship between the two metrics.
slope mean is the mean slope of all inlake or nearshore buffer points. slope_pnts is the average
slope (i.e. slope_pnt) of all points at maximum depth. slope_online mean is the mean pixel-
to-pixel slope of each pixel lying on a straight line either from the single deepest point to the
lake shoreline (in the case of inlake slope) or from the lake shoreline point extending to the buffer
exterior (in the case of nearshore slope). slopes_online mean is the same as slope_online mean

except it uses all inlake points at maximum depth.
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Figure S3. Hypsography classification by state. Numbers on panel labels indicate the per-

centage of lakes in each state with a convex versus a concave cross-section shape.
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Figure S7. Spatial distribution of depth model residuals.
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Figure S8. Comparison between characteristics of lakes with bathymetry data against lakes
with depth from other sources in the LAGOSUS-Depth product. The distance to urban area

metric is calculated using data from the 2018 US Census Urban and Rural Classification.
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by US State where reported depths come from the LAGOSUS-Depth product. For this figure, no
reported depth values originated from the same source as its corresponding bathymetry-derived

value.
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Figure S10. Comparison between in-lake and nearshore slopes in concave and convex lakes

of the same size and max depth. Categories are quantile bins (< 25%, 25-50%, 50-75%, and
75-100%).
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Table S1. Model fit and predictive accuracy metrics (RMSE = root mean square error, R>
= coefficient of determination, MAPE = mean absolute percent error) for the proxy - proxy
combination of geometry metrics (see main text Table 1). Each row shows model metrics when
proxy and ”true” measures are calculated with slight differences from the default (bolded) used in
the main text. slope mean is the mean slope of all inlake or nearshore buffer points. slope_pnts
is the average slope (i.e. slope_pnt) of all points at maximum depth. slope_online mean is
the mean pixel-to-pixel slope of each pixel lying on a straight line either from the single deepest
point to the lake shoreline (in the case of inlake slope) or from the lake shoreline point extending
to the buffer exterior (in the case of nearshore slope). slopes_online mean is the same as
slope_online mean except it uses all inlake points at maximum depth. dists_deepest is the

same as dist_deepest except distance is calculated for all points at maximum depth.

Inlake slope Nearshore slope  Inlake distance RMSE R> MAPE
slope_pnts slope_mean dists_deepest 6.2 m 0.38 58 %
slope_pnt slope_mean dist_deepest 6.4 m 0.35 59 %
slope_pnts slopes_online_mean dist_deepest 6.4 m 0.32 61 %
slope_online_mean slope_mean dists_deepest 6.5 m 0.41 63 %
slope_pnts slope_mean dist_deepest  6.7m 0.44 58 %
slope_online_mean slope_mean dist_deepest  6.7m 0.36 59 %
slope_online_mean slopes_online_mean dist_deepest 6.7 m 0.32 66 %
slope_mean slope_mean dists_deepest 6.8 m 0.36 59 %
slope_pnt slopes_online_mean dists_deepest 6.8 m 0.25 73 %
slope_pnts slope_online_mean dist_deepest 6.9 m 0.3 71 %

slope_online_mean slope_online_mean dist_deepest 6.9 m 0.32 68 %
slope_online_mean slope_online_mean dists_deepest 6.9 m 0.33 65 %

slope_mean slopes_online_mean dists_deepest 7m  0.24 65 %
slope_mean slope_mean dist_deepest 7.1m 0.4 64 %
slopes_online_mean slope_mean dist_deepest 7.1 m 0.37 56 %
slope_mean slope_online_mean dist_deepest 7.1m 0.3 69 %

slopes_online_mean slopes_online_mean dists_deepest 7.2 m 0.32 63 %
slopes_online_mean slopes_online_mean dist_deepest 7.3 m 0.25 64 %

slope_pnt slope_mean dists_deepest 7.3 m 0.35 61 %
slopes_online_mean slope_mean dists_deepest 7.3 m 0.36 60 %
slope_online_mean slopes_online_mean dists_deepest 7.3 m 0.29 58 %
slope_pnts slope_online_mean dists_deepest 7.4 m 0.27 64 %

slopes_online_mean slope_online_mean dists_deepest 7.4 m 0.33 67 %
slopes_online_mean slope_online_mean dist_deepest 7.5 m 0.26 61 %

slope_pnt slopes_online_mean dist_deepest 7.5 m 0.33 69 %
slope_mean slopes_online_mean dist_deepest 7.6 m 0.26 64 %
slope_pnt slope_online_mean dist_deepest 7.7m 0.27 68 % ,
slope_pnts slopes_online_mean dists_deepest 7.8 m 0.3 65 %
slope_pnt slope_online_mean dists_deepest 7.9 m 0.27 67 %

slope_mean slope_online_mean dists_deepest 7.9 m 0.31 60 %
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